Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Plant Commun ; 4(3): 100497, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36435969

RESUMO

Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.


Assuntos
Pistacia , Pistacia/genética , Árvores/genética , Nozes , Domesticação , Cromossomos Sexuais/genética
2.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36454230

RESUMO

Understanding the basis of hybrid vigor remains a key question in crop breeding and improvement, especially for rootstock development where F1 hybrids are extensively utilized. Full-sibling UCB-1 F1 seedling rootstocks are widely planted in commercial pistachio orchards that are generated by crossing 2 highly heterozygous outbreeding parental trees of Pistacia atlantica (female) and P. integerrima (male). This results in extensive phenotypic variability, prompting costly removal of low-yielding small trees. To identify the genetic basis of this variability, we assembled chromosome-scale genome assemblies of the parental trees of UCB-1. We genotyped 960 UCB-1 trees in an experimental orchard for which we also collected multiyear phenotypes. We genotyped an additional 1,358 rootstocks in 6 commercial pistachio orchards and collected single-year tree-size data. Genome-wide single marker association tests identified loci associated with tree size and shape, sex, and precocity. In the experimental orchard, we identified multiple trait-associated loci and a strong candidate for ZZ/ZW sex chromosomes. We found significant marker associations unique to different traits and to early vs late phenotypic measures of the same trait. We detected 2 loci strongly associated with rootstock size in commercial orchards. Pseudo-testcross classification of markers demonstrated that the trait-associated alleles for each locus were segregating in the gametes of opposite parents. These 2 loci interact epistatically to generate the bimodal distribution of tree size with undesirable small trees observed by growers. We identified candidate genes within these regions. These findings provide a foundational resource for marker development and genetic selection of vigorous pistachio UCB-1 rootstock.


Assuntos
Pistacia , Pistacia/genética , Melhoramento Vegetal , Fenótipo , Genótipo
3.
In Vitro Cell Dev Biol Plant ; 52(4): 379-390, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746667

RESUMO

Cornus alba L. (white dogwood) is an important ornamental shrub having a wide range of applications such as reforestation programs and soil retention systems. The vegetative propagation of dogwood by cuttings may be slow, difficult, and cultivar dependent; therefore, an improved micropropagation method was developed. Nodal stem segments of C. alba cultivars 'Aurea' and 'Elegantissima' were cultured on media enriched with six different sources of macronutrients. Media were supplemented with either N6-benzyladenine (BA) or thidiazuron (TDZ) in combination with 1-naphthaleneacetic acid (NAA). Regardless of the cultivar, the best shoot proliferation was observed on Lloyd and McCown medium (woody plant medium (WPM)) at pH 6.2, containing 1.0 mg L-1 BA, 0.1 mg L-1 NAA, and 20-30 g L-1 sucrose. Rooting of regenerated shoots was achieved by an in vitro method when different concentrations of NAA or indole-3-butyric acid (IBA) were tested. Microcuttings were rooted for 8 wk on medium enriched with 0.25 mg L-1 NAA and potted into P9 containers in the greenhouse. The final survival rate of the plants after 20 wk was 80% for 'Aurea' and 90% for 'Elegantissima'. Genetic stability of the micropropagated plants was confirmed by using two DNA-based molecular marker techniques. A total of 30 random amplified polymorphic DNA (RAPD) and 20 inter-simple sequence repeat (ISSR) primers resulted in 197-199 and 184-187 distinct and reproducible band classes, respectively, in 'Aurea' and 'Elegantissima' plantlets. All of the RAPD and ISSR profiles were monomorphic and comparable with the mother plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...